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Phase diagrams of binary mixtures 
of biaxial nematogens 

by JON M. GOETZ and GINA L. HOATSON* 
Department of Physics, College of William and Mary, 

P.O. Box 8795, Williamsburg, Virginia 23 185-8795, U.S.A. 

(Received 26 M a y  1993, accepted 28 October 1993) 

A mean field theory is used to describe nematic phases of binary mixtures of 
biaxial molecules. Using a general pseudopotential consistent with the D,, 
symmetry of the constituent particles, the theory is used to calculate the elements of 
the order tensors necessary to  describe the orientational order in binary mixtures in 
both uniaxial and biaxial nematic phases. For  a single component, the model only 
requires one parameter, r2,  a ratio of anisotropic interaction strengths, to  predict the 
temperature dependence of the four order parameters. The temperature dependence 
of the orientational distribution functions is illustrated for both rod-like and plate- 
like molecules. For binary mixtures, three anisotropic interaction strengths, rlr  r2 ,  
and r3,  are needed to calculate the order parameters of both components as a 
function of concentration and temperature. The free energy is evaluated to predict 
the phase stability of the mixture. By systematically varying the anisotropic 
interaction strengths, temperature-concentration phase diagrams for a variety of 
molecular shapes are presented. The theoretical predictions suggest that binary 
mixtures of molecules with highly asymmetric shapes will display stable biaxial 
nematic phases. 

1. Introduction 
Mean field theories which predict the temperature dependence of orientational 

ordering in liquid crystals have a thirty year history. The well-known Maier-Saupe 
theory [ 13 assumed a uniaxial nematic phase (Nu) of cylindrically symmetric particles. 
Ten years later, this formalism was extended to describe particles lacking an axis of 
rotational symmetry [24]. These generalizations predicted biaxial phases (NR) ten 
years before they were discovered in lyotropics [ S ]  and fifteen years before the first 
reports of thermotropic biaxial nematogens surfaced [6-81. Presently, there is 
considerable doubt if the existence of a thermotropic biaxial phase has been proven 
unambiguously [9, lo]. Characteristics of the nematic phase have been investigated 
using a variety of descriptions: other mean field theories [ll], lattice models [12-141, 
biaxial Onsager-type theories [ 151, Landau approaches [3], and Monte Carlo 
molecular dynamics simulations of hard ellipsoids [ 161. For single component systems, 
all these models come to the same conclusion: the phase behaviour depends on the 
shape of the molecules. For both prolate (rod-like) and oblate (plate-like) liquid crystal 
molecules, any deviation from cylindrical symmetry results in a second order phase 
transition from the uniaxial nematic phase to the biaxial nematic phase as the 
temperature is lowered. For some critical value of molecular shape anisotropy, this 
N,-Nu phase transition temperature, Tsu, becomes equal to the Nu-I transition 
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32 J. M. Goetz and G. L. Hoatson 

temperature, TN,. These calculations suggest that designing a mesogen which combines 
the features of both rods and disks might result in a low molecular weight biaxial 
nematic [ 171. 

Theoretical predictions for the behaviour of binary mixtures of nematogens are 
extremely model dependent. Some mean field lattice models [12,18], extended 
Onsager theories [19,20] and mean field van der Waals-type theories [2l] have 
predicted that mixtures of rod-like and disk-like nematogens should produce biaxial 
nematic phases. Conversely, both molecular mean field theories, in which interactions 
between particles satisfy the geometric mean rule [22,23], and a Monte Carlo 
simulation of mixtures of rods and disks [24] predict that these binary mixtures will 
phase separate into two uniaxial phases. This latter prediction is consistent with the 
lack of experimental evidence for biaxial phases in mixtures of rod-like and plate-like 
molecules. 

Recently a mean field theory has been proposed [25] which includes both 
molecular and phase biaxiality. This approach uses a geometric mean assumption to 
simplify the pseudopotential [22,23,25-281. The result is a theory which requires one 
parameter ( r2)  to predict the temperature dependence of (both biaxial and uniaxial) 
order parameters of a single component nematic, and three parameters (rl ,  r2, r3) to 
describe the temperature and concentration dependence of orientational order in a 
binary mixture. These parameters are ratios of anisotropic interaction strengths 
describing the coupling of the molecular orientation to the mean field with r2 and r3 
increasing as the biaxiality of the molecules increases. The temperature dependences of 
the two order parameters (Q and D) of biaxial particles in a uniaxial phase have been 
described before [29,30] and construction of temperature-concentration phase 
diagrams of mixtures has been used to illustrate the stability of biaxial phases in 
mixtures of cylindrically symmetric molecules [22,23]. The goal of the present work is 
to predict, for the first time, the temperature dependence of all four second rank order 
parameters of a biaxial nematogen and to observe the effect of molecular biaxiality on 
the symmetry of the nematic phase. The first section of this paper presents calculations 
of the pseudopotentials, order parameters, free energies, average energy densities, and 
chemical potentials which are needed to describe the system and evaluate phase 
stability. The second section presents the results of the calculations. The temperature 
dependences of the four order parameters describing alignment of a single component 
biaxial nematogen in a biaxial phase are presented and interpreted. Temperature- 
concentration phase diagrams of binary mixtures of a variety of liquid crystal mixtures 
are presented. In the conclusion, these results are compared to both experimental 
findings [6-10] and predictions of other theoretical descriptions [1-4,11-30]. 

2. Analysis 
The second rank order parameters which completely characterize orientational 

order of biaxial particles (DZh symmetry) [2] are presented below: 

Q = - $ ( ~ C O S ~ ( ~ ) -  l )= (q ) ,  (1) 

D = -$(sin2 (6) cos(2I))) = ( d  ), (2) 

P= -$(sin2(e)cos(2+)> = ( p > ,  (3) 
C=$((1 +c0s2(0))c0s(2~)c0s(21)) 

(4) - 2 cos (0) sin (24) sin (21))) = (c). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
4
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Binary mixtures of biaxial nematogens 33 

The angles (4,6, $) are x-convention Euler angles [31] which describe the rotation 
from the laboratory fixed frame into the molecule fixed frame and ( ) denotes an 
ensemble average. By using the geometric mean assumption [22,23,25-281, a general 
mean field pseudopotential with 13 independent coupling constants is reduced to a 
form in which all particles feel the same isotropic (r), uniaxial nematic (A), and biaxial 
nematic (A’) mean fields [25]. The resulting pseudopotentials, ci, for both components 
of the binary mixture (i=1,2) are functions of the eight scalar order parameters 
(Qi, Di, Pi, Ci) and the three Euler angles (4,%, $). 

c1 = -&Vq1(8)+r2dl(8, $)-4Ql -ir2D11 

- W [ P ~ ~ + , W + ~ ~ C ~ ( ~ ,  e , $ ) - t ~ ~  - i r , ~ , i - i r .  (5 )  

62 = -$Nriq2(e)+r3d2(0, $>-4riQ2 -&3D21 

- $ A ’ [ r l p 2 ( ~ , 6 ) + r 3 c 2 ( 4 , ~ , $ ) - ~ r l P 2 - ~ r ~ C 2 ] - i r o r .  (6) 

Where the mean fields (r, A, A’) are concentration dependent (functions of the number 
densities, p1 and p2), and are scaled by the isotropic ( y l l )  and the uniaxial (Ul l )  
interaction strengths for particle 1, specifically 

r=Y11(PI +rop2), (7) 

A = W i i ( p i Q i  + r 1 ~ 2 Q 2  +r,piDi  +r3~2D2), (8) 

A’ =$u 1 1( p 1 Pl + r1 pZP2 + r 2 p  1 1 f r3p2c2). (9) 
Different molecules vary in their ability to couple to these fields, and the parameters of 
the mean field theory, ro, r l ,  r2 and r3,  are functions of these coupling strengths. 

The constant Uii measures the strength of the interaction coupling the instantaneous 
orientation of the major axis of the species i to the mean fields. w i  gives a measure of the 
interaction strength coupling the instantaneous orientation of the minor axis of species 
i to the means fields, and yii gives the isotropic coupling strength. 

Statistical mechanics is used to calculate the order parameters. The single particle 
partition function for the ith species (Zi) and the order parameters (ti = Qi, Di, Pi, Ci) 
may be calculated for both species, i, by evaluating the integrals 

Since the pseudopotentials are simply functions of the uniaxial and biaxial order 
parameters of both species, this set ofequations can be iterated until it converges to give 
self consistent solutions for all eight orientational order parameters. 

The 4 dimension of the integral in equations (1 1) and (12) was performed 
analytically. The remaining two-dimensional forms of the five integrals given in terms 
of spherical Bessel functions are presented in the Appendix. In the case of a uniaxial 
phase, the integrands are independent of the angle 4, and in this case the integration 
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34 J. M. Goetz and G.  L. Hoatson 

over the angle $ can be performed analytically. Romberg’s method was employed [32] 
to evaluate the ten two-dimensional integrals required for each iteration in the order 
parameter calculation for biaxial phases. The spherical Bessel functions were 
calculated using a polynomial expansion [33] which gave absolute errors of less than 
one part in lo7. The convergence criterion for integration in the 0 dimension required 
fractional accuracy of less that the second dimension, $, required fractional 
errors of less that one part in lo5. The order parameters themselves are reiterated until 
they are consistent to within one part in LO4. The integrals were checked for a test case 
by comparison to Mathernatica’s [34] numerical result of evaluating the actual three 
dimensional integrals, and the solution was found to be correct to within the errors 
cited. Since this theory reduces to a previously published uniaxial model [22] when 
molecular biaxiality is ignored (D = C = 0), the numerics also were checked by 
reproducing the phase diagrams presented in that work. Further verifications included 
comparing the temperature dependence of the order parameters Q and D, calculated for 
prolate molecules in a uniaxial phase (Nu+), with previously published results (r2 is 
equal to 6 in [30]), and reproducing the results of Maier and Saupe for a uniaxial, single 
component system [ 1 )  when r l  = r2 = r3  = 0. 

Once the order parameters have converged, the configurational free energy density 
of the homogeneous mixture can be calculated 

F 
k,TV 

Other thermodynamic quantities of interest which were calculated include the thermal 
average energy densities (el), ( E ~ )  and the entropy density B, 

(&l)=(a)Pl + ( P ) P 2 3  (14) 

CJ 

k,T V -  (a)’ 

where 

For a pure component, if the entropy density jumps discontinuously at the transition, 
i.e. there is a finite entropy of transition, then the phase change is first order [35]. For 
second order transitions, the entropy changes continuously through the transition. 

For homogeneous mixtures, the chemical potential, p i ,  can be calculated for all 
components. This chemical potential is crucial for calculating temperature- 
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Binary mixtures of biaxial nematogens 35 

concentration phase diagrams, since coexistence regions occur where the component 
chemical potentials are equal. For a binary mixture, 

Ca 1 8F 
pz=-= -k,Tln -Z, +k,Tp,(v, -v , )  

dNZ 

where v i  is the molecular volume or the ith species. 
For studying orientational order ofa single component system only the ratio of the 

biaxial coupling strength to the uniaxial coupling strength, r,, is needed. Given this 
parameter, the temperature dependence of the order parameters can be calculated 
assuming a biaxial phase (NB), a uniaxial phase of prolate molecules (rods) with Q > 0 
(Nu+), or a uniaxial phase of oblate molecules (plates) having Q < O  (Nu-). Obviously, 
the biaxial order parameters, P and C,  are zero in a uniaxial phase. When calculating 
the uniaxial order parameters, the algorithm converged to whichever solution was 
closest to the initial conditions for the order parameters. In the biaxial phase, it was 
found that the self-consistent equations converged to the same orientational distri- 
bution independent of initial order parameter guess; however, the principle axis from 
which the Euler angles were defined depends on the initial conditions for the order 
parameters. For all phases, the scaled free energy density is calculated for a single 
component using equation (13) with pz =O. The phase having the minimum orienta- 
tional free energy gives the equilibrium state of the system. Predictions for the 
temperature dependence of the four order parameters (Q, D, P,  C )  as functions of 
molecular biaxial coupling strength, r,, are presented in the results section. 

For binary mixtures, phase separation occurs when the combined free energy of the 
separated phases is lower than the free energy of the homogeneous mixture. 
Temperature-composition phase diagrams give the concentrations and temperatures 
where these miscibility gaps occur [22,23,35]. It is of interest to calculate phase 
diagrams of different mixtures of molecules with a variety of uniaxial and biaxial 
coupling strengths. For a given temperature, once the free energy of a homogeneous 
mixture is known as a function of composition (equation ( 1  3)), the minimum free energy 
phase of the system can be determined. If any line connecting two points on the 
homogeneous free energy curves lie below it, the composition range between the two 
points is unstable and phase separation will occur. The most stable configuration can 
be found by constructing a double tangent to the homogenous free energy curves. An 
equivalent method for finding this double tangent involves the calculation of the 
chemical potential of both components (equations (20) and (21)) [22,35]. When the 
chemical potentials of both components, pi, are equal, the phases are in thermal and 
diffusive equilibrium and can coexist. Therefore, the concentrations where the chemical 
potentials are equal gives the location of the miscibility gaps. Plotting the chemical 
potentials p1 against p2 and locating the point where the curve crosses itself gives a 
second, more numerically efficient method of determining coexistence regions. Phase 
diagrams for a number of mixtures are presented in the results and discussion section. 
In producing the temperature-concentration phase diagrams, the volumetric fraction 
(Y) will be given in lieu of the number density (see the Appendix). In all phase diagrams 
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36 J. M. Goetz and G. L. Hoatson 

presented, the volume per molecule and the isotropic interaction strength are set equal 
for both components to emphasize the effect of the anisotropic interaction strengths. 

3. Results and discussion 
First, the mean field theory prediction for the temperature dependence of all order 

parameters (Q, D, P ,  C j for a pure component was investigated. The temperature 
dependences of these order parameters are presented for five different values of the 
biaxial coupling parameter, r2 ,  in figure 1. At each given temperature, equations (1 1 j 
and (12) were iterated to calculate the four order parameters. Depending on initial 
conditions and phase symmetry, four solutions were found: a biaxial solution (NR), a 
uniaxial solution with Q>O (Nu+), a uniaxial solution with Q < O  (Nu-) and an 
isotropic solution (I). The equilbrium solution for the system was taken to be that of 
minimum free energy (equation (1 3)). Small values of r2 ( r2  ~ 0 . 3 3 )  describe rod-like or 
prolate molecules, while for r2  = 0 the rods are cylindrically symmetric and the Maier- 
Saupe results [l] are reproduced. Large values of r2  ( r2  > 0 . 3 3 )  describe plate-like or 
oblate molecules, with r2  larger than 1.0 describing nearly cylindrically symmetric 
plates. The biaxial phase is found near the transition temperature ( TN,) for intermediate 
values of r2  ( r2%0.33) .  This is in agreement with previous work [24,11-16) which 
predicted that low molecular weight thermotropic biaxial nematic liquid crystals 
should display characteristics of both rod-like and disk-like molecular shapes [ 10,173. 

As the temperature is lowered, mean field theory predicts that nematic liquid 
crystals become more ordered following the sequence I-Nu+-NB (rods) or I-Nu --NB 
(disks). The entropy of transition was calculated using equation (16) and the results 
indicate that the phase transition from the isotropic phase (Q = D = P = C = 0) to the 
uniaxial nematic phases ( P  = C = 0) is first order. The entropy of transition between the 
isotropic phase and the uniaxial nematic phase decreased as the molecular biaxiality 
parameter approached r2  = 0 - 3 3  from either above @Nu-) or below (I-Nu+). The 
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Figure 1. Orientational parameters ( Q , D , P , C )  as a function of temperature for a variety of 

biaxial coupling parameter values (a) r2 =0.20, (b)  r2  =030 ,  (c) r z  =0.35, (d) r2 =0.50, and 
(e)  r2 =0.70. Temperatures are normalized with respect to the Maier-Saupe transition 
temperature. 
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Binary mixtures of biaxial nematogens 39 

phase transition from the uniaxial nematic phase to the biaxial nematic phase (Nu+-N, 
and N,--N,) was found to be second order. 

After the behaviour of pure components was studied, binary mixtures of biaxial 
liquid crystals were investigated. For mixtures, three parameters are needed; r I ,  which 
reduces to a ratio of transition temperatures in the uniaxial case (rl =(v, TNII/v2TN12)1/2) 
[22,28], and r2 and r3,  which measure molecular biaxiality for components 1 and 2 
respectively. The equivalent biaxiality parameter for the second species is r J r l  
= ( W22/U22)1/2. First, a mixture of liquid crystals consisting of rod-like molecules was 
chosen with r2 approximately that expected for uniaxial nematogens, (rl = 0.632, 
r2 =0-163, r3 = 0.158). For the rod-like uniaxial nematogen 2-fluorenyl-4-tetra- 
decyloxybenzoate-d,, the temperature dependences of Q and D were experimentally 
measured and fit to this theory to give r2=0.16f0.01 [36]. Comparison of results 
shown in figure 2 to an earlier study of binary mixtures of uniaxial, prolate liquid 
crystals (rl =0.632, r2 = r3  = 0) [22] shows that the effects of increasing molecular 
biaxiality are to decrease the area of the Nu+-I coexistence region and to cause phase 
separation into a two component heterogeneous mixture in the biaxial phase at lower 
temperatures. A mixture of disk-like liquid crystal molecules ( r l  =0.5, r2 =0-7, r3 = 1.2) 
presents qualitatively similar results as shown in figure 3. Figures 4 and 5 give the result 
of mixing rod-like with plate-like liquid crystal molecules. This temperature- 
concentration phase diagram provides evidence demonstrating that mixtures of liquid 
crystals comprised of prolate and oblate molecules are unstable to spinodal decompo- 
sition into two coexisting uniaxial phases, NU+ and Nu-, even when the molecules are 
slightly perturbed from cylindrical symmetry. A mixture of a rod-like mesogen with an 

B n.n 
0.0 0.2 0.4 0.6 0.8 1 .o 

Y 
Figure 2. Temperatureeconcentration phase diagram for a biaxial binary mixture of rod-like 

liquid crystals with r l  =0.6325, r,=0.1633, r3 =0.1581. The two solid lines on  the top of 
the diagram are prolate nematic (Nu +tisotropic (I) coexistence curves. The dotted lines 
are the coexistence curves if the molecules were cylindrically symmetric (rl =0.6325, 
r2 = 0.0, r3 =O.O). Below T = 0.17, biaxial solutions give the minimum free energy. The 
bottom line is a biaxial nematic (N,)-biaxial nematic (NH) coexistence region. For  all phase 
diagrams, Y is the volumetric fraction of species i = 1 and T is the temperature normalized 
such that T =  1.0 is TN, in Maier-Saupe theory. 
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- 

- 

U- 

0.0 0.2 0.4 0.6 0.8 1 .o 
Y 

Figure 3. Temperaturexoncentration phase diagram for a biaxial binary mixture of disk-like 
liquid crystals with r l  =0.5, r2 = 0.7, r3 = 1.2. The two solid lines on the top of the diagram 
are oblate uniaxial nematic (Nu -f-isotropic (I) coexistence curves. Below T=0.6, the 
system is biaxial. The bottom line is a biaxial nematic (N,jbiaxial nematic (NB) 
coexistence region. 

3.0 

0.0 ’ I 
0.0 0.2 0.4 0.6 0.8 1.0 

Y 
Figure 4. Temperaturexoncentration phase diagram for a biaxial binary mixture of disk-like 

liquid crystals with rod-like liquid crystals, where r l  = 1.0, r2 ~ 0 . 1 6 6 ,  r,=0.70. The two 
solid lines on the top of the diagram are oblate nematic (Nu-)-isotropic (I) coexistence 
curves. The bottom lines show that the biaxial nematic (NB) phase is unstable, and the 
mixture phase separates into two coexisting uniaxial nematic phases (NU+ and Nu-). 
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1.5 I 1 

I 
1.0 . 

b 

0.0 0.2 0.4 0.6 0.8 1.0 
Y 

Figure 5. Temperature-concentration phase diagram for a biaxial binary mixture of disk-like 
liquid crystals with rod-like liquid crystals with r ,  =0.5, r 2  =0.166, r3 =050. The bottom 
lines again show that the biaxial nematic (NB) phase is unstable, and the mixture phase 
separates into two coexisting uniaxial nematic phases (Nu+ and Nu-). Here the two pure 
components have roughly equal isotropic-nematic transition temperatures close to the 
Maier-Saupe value T =  1.0. 

1.0 

0.5 
b 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

Y 
Figure 6. Temperaturexoncentration phase digram for a binary mixture of rod-like nemato- 

gens with highly asymmetric disk-like molecules, here r l  =0.6325, r2 =0.166, r3 =0.25. A 
small region where the biaxial phase is stable exists. The dotted lines are not coexistence 
curves, but simply phase boundaries. The bottom line is a biaxial nematic (N,)-uniaxial 
nematic (Nu +) coexistence region. 
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0.60 

0.40 

0.20 

t 1 

. 

- 

0.00 ' I 
0.0 0.2 0.4 0.6 0.8 1 .o 

Y 
Figure 7. Temperaturexoncentration phase diagram for a biaxial binary mixture of flattened 

rod-like liquid crystals with lopsided disk-like liquid crystals, r l  = 1.0, r2 =0.3, r3  =0.35. 
The dotted lines are not coexistence curves, but simply phase boundaries. For this mixture 
the biaxial phase is stable and is found close to the nematic-isotropic transition 
temperature (T',) for Y e 0 . 3 3 .  

asymmetrically shaped disk (rl =0.632, r2 =0.1633, r3  =0*25) has a small stable biaxial 
phase as shown in figure 6. The last temperature-concentration phase diagram (see 
figure 7) shows that for mixtures of liquid crystals with asymmetric molecular shapes 
between those of rods and disks (rl = 1.0, r2 =0.30, r3 = 0.35), the homogeneous mixture 
in the biaxial phase is stable. The parameter r2  =0.30 describes a flattened rod shaped 
molecule while r3 =0.35 corresponds to a lop-sided disk shaped molecule. The mixture 
of these two liquid crystals does not phase separate, a result which can be understood 
by comparing the free energy curves in figure 8. For the mixture of nearly cylindrically 
symmetric rods and plates in figure 8 (a), a concave free energy envelope shows that a 
heterogeneous mixture minimizes the free energy. For the mixture shown in figure 8 (b), 
the free energy curve is convex which indicates that this mixture will not phase separate 
but remain a homogeneous mixture. The implications of this result are discussed below. 

4. Conclusions 
Mean field theory of binary mixtures nematogens has been used to  calculate 

orientational order parameters over a range of temperature and composition. 
Predictions of the temperature dependence of all four order parameters describing a 
biaxial nematic phase in a single component liquid crystal have been presented for the 
first time. The general result that liquid crystals with asymmetric molecules exhibit a 
second order phase transition when cooled from the uniaxial nematic to the biaxial 
nematic phase is consistent with previous predictions [2-4,ll-161. These theoretical 
results motivated searches for low molecular weight biaxial nematogens [6-10,171. 
Previous experimental investigations of biaxial nematogens in uniaxial phases have 
been performed in which the temperature dependence of the order parameters has been 
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Figure 8. The free energy density a t  a fixed temperature is plotted at  a function ofconcentration 
for the possible phases of the mixture: isotropic (I), prolate uniaxial (Nu+), oblate uniaxial 
(Nu-) and biaxial (NB). For the system illustrated in figure 5 at T = 0.50, the free energy 
density of all four phases is shown in (a). To obtain the minimum free energy, the mixture 
phase separates into uniaxial components. The free energy density for the system 
illustrated in figure 7 at  T = 085 is shown in (b). The minimum free energy corresponds to  a 
homogenous biaxial phase. 
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successfully fitted to this model [36]. It would be interesting to perform analogous 
experiments on the newly reported biaxial nematic liquid crystal systems. 

Behaviour of biaxial nematogens in binary mixtures is also successfully predicted 
using mean field theory. Previous work on nematic mixtures had suggested that it may 
be possible to achieve phase biaxiality by mixing rod-like nematogens and plate-like 
nematogens [15,19-211. Mean field calculations and Monte Carlo simulations of 
cylindrically symmetric molecules (C,  oo symmetry) concluded that for binary mixtures 
of prolate and oblate molecules, the biaxial phase is unstable to spinodal decompo- 
sition into separate inhomogeneous mixtures of uniaxial phases (Nu+ and Nu-) [22- 
241. In the present study it has been shown that the inclusion of slight molecular 
biaxiality into the theory does not affect this result. A mixture of a plate-like liquid 
crystal molecule and a rod-like liquid crystal molecule (with a shape anisotropy 
comparable to those observed in real uniaxial rod-like liquid crystal systems 1361) is 
predicted to phase separate into two uniaxial phases rather than to produce a stable 
biaxial nematic. For pure liquid crystals, systems composed of extremely asymmetric or 
lop-sided molecules prefer the biaxial nematic phase. However, for binary mixtures, the 
interesting result is that a blend of highly asymmetric molecules with opposite shape 
anisotropy (asymmetric rods with asymmetric disks) forms a more stable, higher 
temperature biaxial nematic phase than either pure component alone. 

Appendix 
As explained in the text, integration of the expressions needed to calculate the order 

parameters (equations (1 1) and (12)) can be performed analytically over the angular 
variable 4. This yields the following two-dimensional integrals which must be 
evaluated numerically. 

x2  exp (a)l,(a) dx d$, 

b 
(1 -x2)- a exp(a)l,(a)dxd$, 

(1 - x') cos ($) exp (a)l,(a) dx  d$, (A 4) 

I (4 [b cos ($)+ b cos ($)x2 + 2cx sin ($)I L d x  d$. (A 5 )  
3 

a 

The functions a, b, c and a are: 

b = --jAr2(1 -x2) +$A'r2(1 + x2)cos ($), (A 7) 

c =  --Arr 2 2 x sin($), (A 8) 

c1= J(b2 + 2). (A 9) 
As a last note, the calculations are presented in the results and discussion section as 
functions of the volumetric fraction of molecule i = 1 [22,23,27]. Given the volume per 
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molecule of each component, v1 and v2 the number density, p, is related to the 
volumetric fraction, Y, by the following simple relations. 

Y= Yl =plvj l  (A 10) 

(1-Y)=Y,=p,v,. (A 11) 
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